\qquad Date: \qquad Period: \qquad

Density Worksheet

Procedure

1. Use the data table below and the attached graph paper to plot the mass and volume of the 5 samples of the minerals galena below. Note: the resulting line you plot is the minerals density!
2. Calculate the density of samples 1-5 and place the value in the "density" column of the data table below.
3. Answer the questions below.

Sample	Size	Mass	Volume	Density $(\mathbf{d = m} / \mathbf{v})$
$\mathbf{1}$	small	15 g	$2 \mathrm{~cm}^{3}$	
$\mathbf{2}$			60 g	$8 \mathrm{~cm}^{3}$
$\mathbf{3}$		120 g	$16 \mathrm{~cm}^{3}$	
$\mathbf{4}$		480 g	$64 \mathrm{~cm}^{3}$	
$\mathbf{5}$	large	750 g	$100 \mathrm{~cm}^{3}$	

Questions

1. Use the completed graph to determine how much mass a sample of galena would have if its volume was $75 \mathrm{~cm}^{3}$
2. Use the completed graph to determine how much volume a sample of galena would have if it's mass was 300 g .
3. Describe the relationship between mass and volume shown by the graph.
4. How does the density of Sample 2 compare to that of Sample 4 ?
5. How did the density of the largest sample (5) compare to the smallest sample (1)?
6. What is the effect of sample size on the density of a material?
7. Describe the trick you were taught on how to change around the density formula to solve for different parts of it.

											-

Density Problems Part II: Calculate the density of the following different sized blocks. Do not forget to include units! Recall: Volume $=$ Length \mathbf{x} Width \mathbf{x} Height. Blocks are drawn to scale!

1	$\text { Mass }=10 \mathrm{~g}$	5	$\text { Mass }=40 \mathrm{~g}$	
	Density =		Density =	
2		6	$\text { Mass }=30 \mathrm{~g}$	
	Density =		Density =	
3		7	$\text { Mass }=30 \mathrm{~g}$	
	Density $=$		Density =	
4		8	$\text { Mass }=50 \mathrm{~g}$	
	Density =		Density =	

Density Graphing Part II: For each sample, use the data below to: 1) determine the density, 2) determine if the object will sink or float, 3) plot the objects mass versus volume on the graph paper. Note: the graphed line is that object density! YOU WILL HAVE 5 DIFFERENT LINES ON THE SAME GRAPH! YOU MUST LABEL EACH ONE

Object A	Sample 1	Sample 2	Sample 3	Sample 4	Density (g/ cm^{3})	Sink or float?
Mass (g)	2	4	8	16	$0.5 \mathrm{~g} / \mathrm{cm}^{3}$	FLOAT
Volume (cm^{3})	4	8	16	32		
Object B						
Mass (g)	3	6	12	24		
Volume (cm^{3})	4	8	16	32		
Object C						
Mass (g)	1	2	3	4		
Volume (cm^{3})	1	2	3	4		
Object D						
Mass (g)	2	4	8	16		
Volume (cm^{3})	1	2	4	8		
Object E						
Mass (g)	4	8	16	32		
Volume (cm^{3})	1	2	4	8		

Recall:
the density of water is $1.0 \mathrm{~g} / \mathrm{cm}^{3}$

A density greater then 1.0 sinks in water, while a density less then 1.0 floats

