Density Worksheet

Procedure

- 1. Use the data table below and the attached graph paper to plot the mass and volume of the 5 samples of the minerals galena below. Note: the resulting line you plot is the minerals density!
- 2. Calculate the density of samples 1-5 and place the value in the "density" column of the data table below
- 3. Answer the questions below.

Sample	Size	Mass	Volume	Density
				(d=m/v)
1	small	15 g	2 cm^3	
2		60 g	8 cm^3	
3		120 g	16 cm^3	
4	¥	480 g	64 cm^3	
5	large	750 g	100 cm^3	

Questions

- 1. Use the completed graph to determine how much mass a sample of galena would have if its volume was 75 cm³
- 2. Use the completed graph to determine how much volume a sample of galena would have if it's mass was 300 g.
- 3. Describe the relationship between mass and volume shown by the graph.
- 4. How does the density of Sample 2 compare to that of Sample 4?
- 5. How did the density of the largest sample (5) compare to the smallest sample (1)?
- 6. What is the effect of sample size on the density of a material?
- 7. Describe the trick you were taught on how to change around the density formula to solve for different parts of it.

				ł																
\vdash													\vdash							
L																				
\vdash													\vdash							
\vdash													\vdash							
\vdash													\vdash							
\vdash							\square						\vdash							
\vdash																				
\vdash	$\left \right $					\vdash	\vdash			\vdash	\vdash	\vdash	\vdash		$\left \right $			\vdash		
⊢																				
\vdash				-																
\vdash													$\left \right $							
													\vdash							
\vdash																				
L																				
\vdash													\vdash							
\vdash																			\square	
\vdash													\vdash							
													\square							
\vdash													\vdash							
\vdash													\vdash							
\vdash			<u> </u>				\square			\square			\vdash						-	

Density Problems Part II: Calculate the density of the following different sized blocks. Do not forget to include units! Recall: **Volume = Length x Width x Height**. Blocks are drawn to scale!

Density Graphing Part II: For each sample, use the data below to: 1) determine the density, 2) determine if the object will sink or float, 3) plot the objects mass versus volume on the graph paper. Note: the graphed line is that object density! YOU WILL HAVE 5 DIFFERENT LINES ON THE SAME GRAPH! YOU MUST LABEL EACH ONE

Object A	Sample	Sample	Sample	Sample	Density (g/ cm ³)	Sink or	Recall
	1	2	3	4		float?	the
Mass (g)	2	4	8	16	0.5 g/cm^{3}	FLOAT	density of
Volume (cm^3)	4	8	16	32			water is
Object B							1.0 g/cm^3
Mass (g)	3	6	12	24			1.0 g/cm
Volume (cm ³)	4	8	16	32			A density
Object C							greater
Mass (g)	1	2	3	4			then 1.0
Volume (cm ³)	1	2	3	4			sinks in
Object D							water,
Mass (g)	2	4	8	16			while a
Volume (cm ³)	1	2	4	8			density
Object E							less then
Mass (g)	4	8	16	32			1.0 floats
Volume (cm ³)	1	2	4	8			

			ŀ													
															\square	
															\square	
															\square	
															\square	
															\square	
															\square	
															\mid	
															\mid	
															\square	
															\square	