8 th Grade Science-Uddo
Math in science notes

Name:	
Date:	Class Period:

The Metric System

- The two systems of measurement used in the world are ______ and _____ and _____
 - o The US uses the ______ system
 - o Most other countries use the _____ system
 - The metric system is based on powers of _____

English Units of Measure (and what they measure)	Metric Units of Measure (and what they measure)

- In science we **only** use the ______ system of measurement to collect data
 - o Examples of units of measure in the metric system:
 - Length -- _____, centimeters, kilometers, the base unit is the meter
 - Mass-____, milligrams, the base unit is the gram
 - <u>Volume</u> liter, _____ the base unit is the liter

Converting with in the metric system

When moving from one unit to a unit
 When moving from one unit to a unit

No. of units moved	Unit multiplied by
1	0.1
2	0.01
3	0.001
4	0.0001
5	0.00001
6	0.00000 1

No. of units moved	Unit multiplied by
moved	Offic multiplied by
1	10
2	100
3	1000
4	10000
5	10000
6	100000

.1 cm = 1 mm $.01 \, dm = 1 \, mm$.001m = 1mm.0001dkm = 1mm .00001 hm = 1 mm.000001 km = 1 mm There is an easier way to convert in the metric system!!!

You just have to remember this mnemonic device and fill in the stair steps....

King Henry Died

base unit

Drinking **C**hocolate **M**ilk

Fill in the boxes in the stair step diagram.

In Class Practice

Compare using >, < or =

Graphs and Graphing

First let's review....

https://www.youtube.com/watch?v=l0jTMDtX4WY

Experimental Design

Experiments are made up of two groups:

1.) Control Group - _____

2.) Experimental Group - _____

Variables

A little practice--Identify the independent variable and dependent variable in each scenario.

1.) Does adding dimples to a car increase its gas mileage?

a. Independent variable _____

b. Dependent variable _____

c. Control Group

2.) Are elephants afraid of mice?

a. Independent variable _____

b. Dependent variable _____

c. Control Group

3.) Can a rock thrown in a lawn mower have the same force as a bullet shot from a gun?

a. Independent variable _____

b. Dependent variable _____

c. Control Group

4.) Is it worth running in the rain?

a. Independent variable _____

b. Dependent variable _____

c. Control Group

Types of graphs

1.) Line graph - ______

2.) Bar graph - ______

3.) Scatter plot - _____

4.) Circle graph - _____

Parts of the graph When creating graphs in science make sure to follow the checklist Scale- graph should take up _____ page (>80%), each line is worth the _____ value, the numbers are spaced; allows us to see the in data easily How to find the proper scale (for most cases) **1.)** Count the number of on each axis and jot that number down somewhere. 2.) Divide the range (range is between the highest value and the lowest value for that data set) by the number of boxes on that axis. If the number is a decimal you will always _____ to the next whole number. You have to round up to keep your graph inside your axes, if you do not your data will go off of the page. This number will be your scale for that particular axis. **This step also has to be followed for each separate ______. Scale = Range / Number of Boxes Units- what the _____ on the scale are measuring, (m), (s), (°C) Labels- Describes what is being _____; length, time, temperature Labeled Axis (title AND units) a. X axis = _____ variable b. Y axis = variable c. Remember DRY MIX i. D-____ ii. R - ____ iii. Y iv. M - _____ v. I-____ vi. X -Title- Placed across the top of the graph, short ______ of what the graph shows; DO NOT simply

restate the _____ and ____ variables; ie. Number of waves vs. Time

Accuracy - data is plotted precisely, ______ included if necessary

Neatness – lines drawn with a , easy to read

Line Graphs

• Shows how the dependent variable is related to or changes due to the independent variable

Line Graph Relationships

Descriptions of how two variables ______ to each other

o Direct Relationship – BOTH variables ______ or BOTH variables

Pattern on graph repeats over time

Static – As the independent variable ______, the dependent variable

o ______ Relationship – When one variable increases, the other decreases

Label the graphs below with the relationships from above

Determine which graph relationship (Direct, Indirect, Cyclic, Static) would illustrate the following data

1.) Frequency of ocean tides

2.) As temperature increases, density decreases

3.) Seasonal Temperatures

4.) As mineral size increases, density stays the same

5.) Plants grow more with more sunlight

Let's Practice making a line graph....make sure to check **SULTAN** so that ALL required parts are included

1.) The data table shows the average level of atmospheric carbon dioxide (CO2), measured in parts per million (ppm), for the month of February at the Mauna Loa observatory in Hawaii from 2008 to 2014.

Create a graph that correctly represents this data DON'T FORGET SULTAN

Year	Average February Atmospheric CO ₂ Levels (ppm)
2008	386
2009	387
2010	390
2011	392
2012	394
2013	396
2014	398

Bar Graphs	
<u>bai Grapiis</u>	

- Used to _____ things, good for
- If there is data for multiple groups, bars can be side by side or
- If there are multiple bars for a category
 a _______ is necessary

Planetary distance from the sun

Let's Practice making a bar graph....make sure to check **SULTAN** so that ALL required parts are included

2.) The table below shows information about five large object in the Kuiper Belt. The Kuiper Belt is located approximately 30-100 astronomical units (AU) from the Sun. An astronomical unit is the average distance between the Earth and the Sun, 149.6 million kilometers.

Create a graph of the equatorial diameter of each of the Kuiper Belt objects listed in the table. The diameter of Earth's moon has been graphed for comparison.

	Oi	1		
Kuiper Belt Objects	Closest Distance to the Sun (AU)	Farthest Distance from the Sun (AU)	Eccentricity	Approximate Equatorial Diameter (km)
Varuna	40.47	45.13	0.053	900
Eris	37.77	97.56	0.442	2400
Quaoar	41.92	45.28	0.039	1260
Sedna	76.15	975.05	0.855	1500
Ixion	30.04	49.36	0.243	1065

Kuiper Belt Data

- Used to determine if there is a
 _____ or
 relationship between two variables
 - a. <u>Correlation-</u> as one variable increases so does the other
 - **b.** <u>Negative Correlation</u>- as one variable goes _____, the other goes _____
 - c. <u>No correlation</u>- no apparent_____ between the variables

Eruption Duration (Min)

Let's Practice making a scatter plot....make sure to check **SULTAN** so that ALL required parts are included

3.) Assume that during a three-hour period spent outside, a person recorded the temperature and their water consumption. The experiment was conducted on 9 randomly selected dates during the summer. The data shown is shown in the table below.

Day	Temperature	Water
	(°F)	Consumption (oz)
1 99		48
2	85	27
3	97	48
4	75	16
5	92	32
6	85	25
7	83	20
8	92	40
9	83	23

Circle one:

This graph shows a **Positive / Negative / No correlation** between the data

Circle Graphs

Let's Practice making a pie graph....make sure to check <u>SULTAN</u> so that ALL required parts are included

Make a pie chart to display the percentage of runs at Snow Ridge Ski Area. Some dashed lines have been placed in

the chart to help you be as accurate as possible

Snow Ridge Ski Area				
Beginner	50%			
Intermediate	25%			
Advanced	15%			
Expert Only	10%			

Mass, Volume and Density Mass • The amount of ______ in something • Units = _____ Tool used to measure = Volume • The amount of _____ something takes up • Units = _____ or ____ • Tool used to measure = _____ or _____ Two methods for finding volume: 1.) Regular object (regular object = _____sides) Use a <u>ruler</u> or <u>meter stick</u> and measure ______, width and ______ Formula = ______ cm x cm x cm = cm 3 we measured _____ dimensions so units are _____ 2.) ______ **object** (for example a mineral or rock) ______ use a graduated cylinder 1. Fill _____ with water, leave room at the top, note the amount of water 2. Put object in graduated cylinder, note new water level 3. value in #1 from value in #2 4. Your answer for #3 is the volume with _____ as the units **Density** • The amount of _____ in a specific _____ • Can be used to help identify an ______ substance • Units = _____or ____ • Tools used to measure = ______, and _____ or ____ Density of water is _____ or ____ or ____ , its density is _____ than 1 g/cm³ b. If an object is placed in water and it _____, its density is _____ than 1 g/cm³

Density Formula

Using the one density formula you can rearrange the variables to solve for any factor.

Use the Density Triangle to complete the formulas below.

Let's do some examples—for credit you must

- a. Write the formula
- b. Show all work
- c. Round to the nearest hundreth's place
- d. Include proper units
- 1.) What is the density of an object with a mass of 120 g and a volume of 7 mL?
- 2.) What is the volume of an object with 220 grams and a density of 55 g/cm³?

3.) A block of wood h	nas a mass of	180 grams.	It is 10.0 lc	ng, 6.0 cm	wide, and	l 4.0 cm thick.	What is its v	olume
	and density?								

- 4.) Mass = 34.1 g Volume = 78.5 mL Density = ?
- 5.) Mass = 27 g Density = 0.76 g/cm3 Volume = ?
- 6.) Volume = 25 mL Density = 2.5 g/mL Mass = ?

Review--Measurement Table

<u>Property</u>	<u>Tool</u>	<u>Units</u>	<u>Formula</u>
Mass			
Volume (regular object)			
Volume (irregular object)			No formula but what is the
			method?
Density			
Length			