\qquad
Date: \qquad Class Period: \qquad

The Metric System

- The two systems of measurement used in the world are \qquad and \qquad
- The US uses the \qquad system
- Most other countries use the \qquad system
- The metric system is based on powers of \qquad

English Units of Measure (and what they measure)	Metric Units of Measure (and what they measure)

- In science we only use the \qquad system of measurement to collect data
- Examples of units of measure in the metric system:
- Length -- \qquad , centimeters, kilometers, the base unit is the meter
- Mass- \qquad , milligrams, the base unit is the gram
- Volume - liter, \qquad the base unit is the liter

Converting with in the metric system

- When moving from one unit to a \qquad unit
- When moving from one unit to a \qquad unit

No. of units

moved	Unit multiplied by
1	0.1
2	0.01
3	0.001
4	0.0001
5	0.00001
6	0.000001

$1 \mathrm{~mm}=.1 \mathrm{~cm}$
$1 \mathrm{~mm}=.01 \mathrm{dm}$
$1 \mathrm{~mm}=.001 \mathrm{~m}$
$1 \mathrm{~mm}=.0001 \mathrm{dkm}$
$1 \mathrm{~mm}=.00001 \mathrm{hm}$
$1 \mathrm{~mm}=.000001 \mathrm{~km}$

No. of units moved	Unit multiplied by
1	10
2	100
3	1000
4	10000
5	10000
6	100000

$$
\begin{aligned}
& .1 \mathrm{~cm}=1 \mathrm{~mm} \\
& .01 \mathrm{dm}=1 \mathrm{~mm} \\
& .001 \mathrm{~m}=1 \mathrm{~mm} \\
& .0001 \mathrm{dkm}=1 \mathrm{~mm} \\
& .00001 \mathrm{hm}=1 \mathrm{~mm} \\
& .000001 \mathrm{~km}=1 \mathrm{~mm}
\end{aligned}
$$

There is an easier way to convert in the metric system!!!
You just have to remember this mnemonic device and fill in the stair steps....
King Henry Died base unit $\underline{\text { Drinking }}$ Chocolate Milk

Fill in the boxes in the stair step diagram.

In Class Practice
1.) $4 \mathrm{~km}=$ \qquad m
2.) $2000 \mathrm{mg}=$ \qquad g
3.) $104 \mathrm{~km}=$ \qquad m
4.) $480 \mathrm{~cm}=$ \qquad m
5.) $5.6 \mathrm{~kg}=$ \qquad g
6.) $8 \mathrm{~mm}=$ \qquad cm
7.) $5 \mathrm{~L}=$ \qquad mL
8.) $198 \mathrm{~g}=$ \qquad kg
9.) $75 \mathrm{~mL}=$ \qquad L
10.) $50 \mathrm{~cm}=$ \qquad m
13.) $2500 \mathrm{~m}=$ \qquad km
11.) $5.6 \mathrm{~m}=$ \qquad cm
14.) $65 \mathrm{~g}=$ \qquad mg
12.) $16 \mathrm{~cm}=$ \qquad mm
15.) 6.3 cm \qquad mm
16.) $120 \mathrm{mg}=$ \qquad g

Compare using >, < or =
17.) 63 cm \qquad 6 m
18.) 536 cm \qquad 53.6 dm
19.) 5 g \qquad 508 mg
19.) 43 mg \qquad 5 g
20.) 1500 mL \qquad 1.5 L
21.) 3.6 m \qquad 36 cm

Graphs and Graphing

First let's review....

https://www.youtube.com/watch?v=I0jTMDtX4WY

Experimental Design

Experiments are made up of two groups:
1.) Control Group -
2.) Experimental Group - \qquad

Variables

- Independent Variable- \qquad
- Dependent Variable - \qquad

A little practice--Identify the independent variable and dependent variable in each scenario.
1.) Does adding dimples to a car increase its gas mileage?
a. Independent variable \qquad
b. Dependent variable \qquad
c. Control Group \qquad
2.) Are elephants afraid of mice?
a. Independent variable \qquad
b. Dependent variable \qquad
c. Control Group \qquad
3.) Can a rock thrown in a lawn mower have the same force as a bullet shot from a gun?
a. Independent variable \qquad
b. Dependent variable \qquad
c. Control Group \qquad
4.) Is it worth running in the rain?
a. Independent variable \qquad
b. Dependent variable \qquad
c. Control Group \qquad

Types of graphs

1.) Line graph -
2.) Bar graph -

3.) Scatter plot - \qquad
4.) Circle graph - \qquad

Parts of the graph

When creating graphs in science make sure to follow the \qquad checklist

Scale- graph should take up \qquad page ($>80 \%$), each line is worth the \qquad value, the numbers are \qquad spaced; allows us to see the \qquad in data easily

How to find the proper scale (for most cases)
1.) Count the number of \qquad on each axis and jot that number down somewhere.
2.) Divide the range (range is \qquad between the highest value and the lowest value for that data set) by the number of boxes on that axis.

If the number is a decimal you will always \qquad , to the next whole number. You have to round up to keep your graph inside your axes, if you do not your data will go off of the page.

This number will be your scale for that particular axis.
**This step also has to be followed for each separate \qquad .

> Scale = Range / Number of Boxes

Units- what the \qquad on the scale are measuring, (m), (s), $\left({ }^{\circ} \mathrm{C}\right)$

Labels- Describes what is being \qquad ; length, time, temperature

Labeled Axis (title AND units)
a. X axis $=$ \qquad variable
b. Y axis $=$ \qquad variable
c. Remember DRY MIX
i. D- \qquad
ii. R- \qquad
iii. Y - \qquad
iv. M- \qquad

v. I- \qquad
vi. X- \qquad
Title- Placed across the top of the graph, short \qquad of what the graph shows; DO NOT simply restate the \qquad and \qquad variables; ie. Number of waves vs. Time

Accuracy - data is plotted precisely, \qquad included if necessary

Neatness - lines drawn with a \qquad easy to read

Line Graphs

- Used to show a \qquad
\qquad
- Shows how the dependent variable is related to or changes due to the independent variable

Line Graph Relationships

- Descriptions of how two variables \qquad to each other
- Direct Relationship - BOTH variables \qquad or BOTH variables
\bigcirc \qquad - Pattern on graph repeats over time
- Static - As the independent variable \qquad , the dependent variable

○ \qquad Relationship - When one variable increases, the other decreases

Label the graphs below with the relationships from above

Determine which graph relationship (Direct, Indirect, Cyclic, Static) would illustrate the following data

1.) Frequency of ocean tides
2.) As temperature increases, density decreases
3.) Seasonal Temperatures
4.) As mineral size increases, density stays the same
\qquad
5.) Plants grow more with more sunlight
\qquad
\qquad

Let's Practice making a line graph....make sure to check SULTAN so that ALL required parts are included
1.) The data table shows the average level of atmospheric carbon dioxide (CO2), measured in parts per million (ppm), for the month of February at the Mauna Loa observatory in Hawaii from 2008 to 2014.

Create a graph that correctly represents this data DON'T FORGET SULTAN

Year	Average February Atmospheric CO 2				
Levels (ppm)		$	$	2008	386
:---:	:---:				
2009	387				
2010	390				
2011	392				
2012	394				
2013	396				
2014	398				

a. What type of relationship is shown on the graph?
\qquad
\qquad

b. What is the dependent variable?

- Used to \qquad things, good for \qquad
- If there is data for multiple groups, bars can be side by side or \qquad
- If there are multiple bars for a category
a \qquad is necessary

Let's Practice making a bar graph....make sure to check SULTAN so that ALL required parts are included

2.) The table below shows information about five large object in the Kuiper Belt. The Kuiper Belt is located approximately 30-100 astronomical units (AU) from the Sun. An astronomical unit is the average distance between the Earth and the Sun, 149.6 million kilometers.

Create a graph of the equatorial diameter of each of the Kuiper Belt objects listed in the table. The diameter of Earth's moon has been graphed for comparison.

		促						Kuiper Belt Data			
									Obit Characteristics		
4500							Kuiper Belt Objects	Closest Distance to the Sun (AU)	Farthest Distance from the Sun (AU) (AU)	Eccentricity	Approximate Equatorial Diameter (km)
3500							Varuna	40.47	45.13	0.053	900
00							Eris	37.77	97.56	0.442	2400
							Quaoar	41.92	45.28	0.039	1260
							Sedna	76.15	975.05	0.855	1500
2000							Ixion	30.04	49.36	0.243	1065
1500											
						E					
500						E					
						E					
	Earth's Moon										

- Used to determine if there is a
\qquad or
relationship between two variables
a.
Correlation- as one variable increases so does the other
b. Negative Correlation- as one variable goes \qquad the other goes \qquad
c. No correlation- no apparent

\qquad between the variables

Let's Practice making a scatter plot....make sure to check SULTAN so that ALL required parts are included
3.) Assume that during a three-hour period spent outside, a person recorded the temperature and their water consumption. The experiment was conducted on 9 randomly selected dates during the summer. The data shown is shown in the table below.

Day	Temperature $\left({ }^{\circ} \mathrm{F}\right)$	Water Consumption (oz)
1	99	48
2	85	27
3	97	48
4	75	16
5	92	32
6	85	25
7	83	20
8	92	40
9	83	23

Circle one:

This graph shows a Positive / Negative/ No correlation between the data

Circle Graphs

- Used to show parts of a whole - look for \qquad
- Good for showing the \qquad of something
- Always include a \qquad
- Your \qquad should be the value assigned to each slice

Let's Practice making a pie graph....make sure to check SULTAN so that ALL required parts are included

Make a pie chart to display the percentage of runs at Snow Ridge Ski Area. Some dashed lines have been placed in the chart to help you be as accurate as possible

Snow Ridge Ski Area	
Beginner	50%
Intermediate	25%
Advanced	15%
Expert Only	10%

Mass, Volume and Density

Mass

- The amount of \qquad in something
- Units = \qquad
- Tool used to measure = \qquad

Volume

- The amount of \qquad something takes up

- Units = \qquad or \qquad
- Tool used to measure = \qquad or \qquad
Two methods for finding volume:
1.) Regular object (regular object $=$ \qquad sides)
- Use a ruler or meter stick and measure \qquad , width and \qquad
- Formula $=$ \qquad dimensions so units are \qquad
2.) \qquad object (for example a mineral or rock)
\qquad
-- use a graduated cylinder

1. Fill \qquad
\qquad with water, leave room at the top, note the amount of water
2. Put object in graduated cylinder, note new water level
3. \qquad value in \#1 from value in \#2
4. Your answer for \#3 is the volume with \qquad as the units

Density

- The amount of \qquad in a specific \qquad
- Can be used to help identify an \qquad substance
- Units = \qquad or \qquad
- Tools used to measure = \qquad and \qquad or \qquad
- Density of water is \qquad or \qquad
a. If an object is placed in water and \qquad , its density is \qquad than $1 \mathrm{~g} / \mathrm{cm}^{3}$
b. If an object is placed in water and it \qquad its density is than $1 \mathrm{~g} / \mathrm{cm}^{3}$

Density Formula

Using the one density formula you can rearrange the variables to solve for any factor.

Use the Density Triangle to complete the formulas below.

** Density of an \qquad no matter how many pieces it's broken in to! ***

Let's do some examples-for credit you must

a. Write the formula
b. Show all work
c. Round to the nearest hundreth's place
d. Include proper units
1.) What is the density of an object with a mass of 120 g and a volume of 7 mL ?
2.) What is the volume of an object with 220 grams and a density of $55 \mathrm{~g} / \mathrm{cm}^{3}$?
3.) A block of wood has a mass of 180 grams. It is 10.0 long, 6.0 cm wide, and 4.0 cm thick. What is its volume and density?
4.) Mass $=34.1 \mathrm{~g}$

Volume $=78.5 \mathrm{~mL}$
Density $=$?
5.) Mass $=27 \mathrm{~g}$

Density $=0.76 \mathrm{~g} / \mathrm{cm} 3$
Volume $=$?
6.) Volume $=25 \mathrm{~mL}$ Density $=2.5 \mathrm{~g} / \mathrm{mL}$ Mass = ?

Review--Measurement Table

Property	Tool	Units	Formula
Mass			
Volume (regular object)			No formula but what is the method?
Volume (irregular object)			
Density			
Length			

