\qquad

Problem:

Calculate how many years it takes certain substances to decay by the half-life theory.

**SHOW ALL WORK FOR FULL CREDIT

Procedure:

1. Answer the questions as best as you can.
2. Don't forget to count half-lives carefully.
3. Make sure to keep units the same. (If you are dealing with grams, make sure you label your final answer in grams.)

Activity:

1. If you are given a 2,900 -gram sample of Hydrogen, and hydrogen has a half-life of 2,450 years.

Calculate the following:
A. How much hydrogen is left after 19,600 years?
B. How many half-lives must occur to reach 5.66 grams of hydrogen?
C. How many half-lives must occur to reach 45.31 grams?
D. How many years have passed for B ? How many years have passed for C ?
2. If you have a 2,300 gram sample of Uranium-235, calculate the following:
A. What is the half-life of Uranium?
B. How many years is 4 uranium half-lives equal to?
C. How many half-lives does it take to reach 71.875 grams?
3. How many half-lives does the following diagram show?
4. If that were a 3,500 -gram sample how much would be left?
5. If that sample had a half-life of 2.2 million years, how many years will have passed?

Base your answers to questions 6 and 7 on the diagram below, which represents a model of a radioactive sample with a half-life of 5,000 years.
6. How many more boxes should be shaded to represent the additional decayed material formed during the second half-life?
a. 12
b. 6
c. 3
d. 0
7. Which radioactive isotope has a half-life closest in duration to this radioactive sample?

Radioactive Sample After First Half-Life

a. carbon-14
b. potassium-40
c. uranium-238
d. rubidium-87
\qquad

Problem:

Calculate how many years it takes certain substances to decay by the half-life theory.

**SHOW ALL WORK FOR FULL CREDIT

Procedure:

1. Answer the questions as best as you can.
2. Don't forget to count half-lives carefully.
3. Make sure to keep units the same. (If you are dealing with grams, make sure you label your final answer in grams.)

Activity:

2. If you are given a 2,900 -gram sample of Hydrogen, and hydrogen has a half-life of 2,450 years.

Calculate the following:
A. How much hydrogen is left after 19,600 years?
B. How many half-lives must occur to reach 5.66 grams of hydrogen?
C. How many half-lives must occur to reach 45.31grams?
D. How many years have passed for B? How many years have passed for C ?
2. If you have a 2,300 gram sample of Uranium-235, calculate the following:
D. What is the half-life of Uranium?
E. How many years is 4 uranium half-lives equal to?
F. How many half-lives does it take to reach 71.875 grams?
3. How many half-lives does the following diagram show?
4. If that were a 3,500 -gram sample how much would be left?
5. If that sample had a half-life of 2.2 million years, how many years will have passed?

Base your answers to questions 6 and 7 on the diagram below, which represents a model of a radioactive sample with a half-life of 5,000 years.
6. How many more boxes should be shaded to represent the additional decayed material formed during the second half-life?
a. 12
b. 6
c. 3
d. 0
7. Which radioactive isotope has a half-life closest in duration to this radioactive sample?

Radioactive Sample After First Half-Life

a. carbon-14
b. potassium-40
c. uranium-238
d. rubidium-87

